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Abstract  This chapter presents recent advances in the understanding of the effect 
of land cover/land use changes on the hydrologic cycle, and identifies current gaps 
in the knowledge needed for useful decision-making and water resource manage-
ment. Research achievements within a framework of Earth System Models (ESM) 
are introduced, and research needs and future challenges are identified. Land sur-
face provides the lower boundary condition to the atmosphere over continents by 
controlling the fluxes of momentum, heat, water, and materials such as carbon. In 
turn, land surface conditions are substantially influenced by atmospheric conditions 
on various temporal scales. As such, a land-atmosphere coupled system is estab-
lished through biogeochemical feedbacks. Current land surface models exhibit a 
wide variety of responses to the same forcings, suggesting the need for increased 
research at the land-atmosphere interface. Indeed, all Earth System Models require 
the inclusion and validation of the processes that pertain to the biogeochemical 
feedbacks. Anthropogenic activities that result in land use and land cover changes 
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affect the land surface characteristics and consequently the land-atmosphere 
feedbacks and coupling strength. Therefore, human activities play a role in the land-
atmosphere coupling system, and thus, in the climate system. Water is essential to 
societal needs that require the construction of reservoirs, extraction of ground water, 
irrigation, changes in land use, urbanization among many other influences. The 
extent and sustainability of those interferences in the natural system remains to be 
assessed at global scales.

Keywords  Land-atmosphere feedback • Vegetation • Ecosystem • Human impacts • 
Water • Energy • Carbon • Land cover/land use

1  �Introduction

The land surface provides lower boundary conditions to the atmosphere: It receives 
downward short wave and long wave radiation, and emits or reflects upward short 
wave and long wave radiation. The net radiation is balanced by the fluxes of sensi-
ble, latent and ground heat to the atmosphere (Oki 1999). In terms of the water 
balance, precipitation is balanced by evapotranspiration and runoff (assuming that 
over long term periods there is no net water storage change on the soil). These 
exchanges also depend on the atmospheric conditions, including the surface pressure, 
temperature, humidity and wind. A balance mainly between precipitation, evapo-
transpiration and surface and deep runoff determines the land surface water cycle. 
Surface soil moisture, in turn, governs the partitioning of the sensible and latent 
heat fluxes into the atmosphere, and can affect daily, weekly, intraseasonal, sea-
sonal, and interannual rainfall in various spatial scales through the impacts on devel-
opment PBL (planetary boundary layers), its longer temporal auto-correlation 
(“memory” effect), and possibly through interactions with vegetation (see Table 1 
of Taylor et al. 2011). Excess water from land discharges into the ocean changing 
its salinity and temperature, and possibly influences the formation of sea ice and 
thermohaline circulation at least on local scales (Oki et al. 2004).

The energy, water, and carbon balances determined by land surface processes 
are characterized by the land surface conditions such as topography, land cover, soil 
properties, and geological condition. Land cover can be characterized by the vegeta-
tion over it, such as forests, shrubs, grass, bare soil, or open water. Since vegetation 
types are dominantly determined by climatological conditions, land surface interacts 
with the atmosphere not only on the short time scales but also in longer temporal 
scales, such as decadal to centennial. Even though storage volumes are not as large 
as in the ocean, the land stores heat, water, and carbon, and thus, the land surface is 
one of the key components in the climate system on the Earth.

In many cases, particularly when dealing with extreme events, climatic variations 
and changes can have significant impacts on human activities; therefore it is critical 
that climate science includes and develops tools for monitoring and prediction of 
climatic variations. As climate affects human activities, in turn humans interfere with 
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the climate system from local to global scales. Apart from human influences through 
greenhouse gases (GHGs, not discussed in this chapter), human influences on the 
ecosystem service of climate regulation occur through changes in land use and land 
cover (Anderson-Teixeira et al. 2012), as well as through interventions on the water 
cycle components, for example by irrigation (Rosnay et al. 2003; Guimberteau et al. 
2011) and storage in artificial reservoirs (Haddeland et  al. 2006; Hanasaki et  al. 
2006, 2010).

The World Climate Research Programme (WCRP) emphasis on the role of land 
in the climate system has been mainly conducted through the Global Energy and 
Water Cycle Experiment (GEWEX). The GEWEX Hydroclimate Panel (GHP) has 
been promoting and synthesizing field campaigns measuring, estimating, and seek-
ing to close the regional water balances in various climatic zones at continental and 
sub-continental scales. The Global Land-Atmosphere System Study (GLASS; van 
den Hurk et al. 2011) has been promoting and organizing numerical studies assess-
ing the coupling between land and atmosphere, and the Global Data and Assessments 
Panel (GDAP) supports the creation and dissemination of comprehensive datasets 
of the climatic variables over land. The products from the Second Global Soil 
Wetness Project (GSWP-2; Dirmeyer et al. 2006) contributed to illustrate the global 
water cycles as shown in Fig. 1 (Oki and Kanae 2006).

The terrestrial water balance does not include Antarctica
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Fig. 1  Global hydrological fluxes (1,000 km3/year) and storages (1,000 km3) with natural and 
anthropogenic cycles are synthesized from various sources (Dirmeyer et al. 2006; Korzun 1978; 
Oki et  al. 1995; Shiklomanov 1997). Big vertical arrows show total annual precipitation and 
evapotranspiration over land and ocean (1,000 km3/year), which include annual precipitation and 
evapotranspiration in major landscapes (1,000  km3/year) presented by small vertical arrows; 
parentheses indicate area (million km2). The direct groundwater discharge, which is estimated to 
be about 10 % of total river discharge globally (Church 1996), is included in river discharge
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In this chapter, we discuss the feedbacks and interactions between the land surface 
and the climate system, particularly with regard to land use and land cover change. 
The role of land use change in the hydro-climate system is presented in Sect. 2. 
The interactions with ecosystems are summarized in Sect. 3, and societal needs for 
research on water over land are introduced in Sect. 4. Section 5 identifies current 
gaps and future challenges for the research on land surface processes in the climate 
system.

2  �Land Use Change and Hydroclimate

Long term changes to the land surface state occur when there is a significant change 
in the land cover, such as conversions from forest to crops. In cases like this, there will 
be changes in the biophysical properties of the surface, like its albedo, surface 
roughness length, and stomatal resistance. In addition, there will be changes to the 
hydrological functioning of the land surface, with changes in the amount of water 
available for storage and the runoff, possibly through changes in the soil properties 
and root uptake.

Many researchers have worked to quantify the impact that such changes have on 
the atmosphere. For instance, modeling experiments have been carried out to under-
stand the regional climate impact of the wide-scale spread of agriculture that has 
occurred over the last century (see Pitman et al. 2009). Specifically, the goal was to 
assess if the current regional climate has been influenced by the anthropogenically 
altered landscape. The model results showed varying responses of the evaporation 
and rainfall to the deforestation, as the changes were small and of either sign. Part 
of the reason is due to difficulties in defining a consistent definition of vegetation 
characteristics for natural versus anthropogenic land use types and differences in 
parameterization in the models. However, the models were in better agreement on 
the changes in the air temperature: removing the forests and replacing them with 
crops and pasture cools the summer air by about 1° in the last 100 years in the two 
key regions of largest land use change: the middle of the USA and western Russia. 
This result is supported by an observational study of evaporation and sensible heat 
flux observations from a series of paired forest and grass sites across Europe by 
Teuling et al. (2010), which demonstrated, similar to the models, that the forests 
generally warm the atmosphere compared to grasses and crops. However, Teuling 
et al. (2010) also showed how this signal changes during drought conditions, when 
the grasses dry out and then warm the atmosphere more than the forests. Figure 2 is 
a schematic summarizing the findings of Teuling et al. (2010) and of Pitman et al. 
(2009), showing how the forests act to warm the overlying atmosphere under normal 
climatic periods, while grasses or crops warm the atmosphere during anomalously 
dry periods. This has important implications for the physical response to land use 
change and its impact on the regional meteorology, since an increasing cropped area 
may act to enhance the regional susceptibility to heat waves, while reforestation 
may act to reduce a heat wave. Clearly, more research and a combined approach to 
risks and hazards (such as wild fire) are necessary to support this conclusion.
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As well as impacts on the heat and temperature of a region, impacts of land cover 
change on the hydrological conditions should be expected due to feedbacks in the 
system. The relationships between the land and the atmosphere are part of the natural 
interplay that happens all around us: with a long term reduction in rainfall, the land 
dries out and this warms and dries the atmosphere which leads to further drying out 
of the land. This positive feedback means that a percentage drop in rainfall leads to 
a greater percentage drop in runoff and vice versa. Many articles have discussed the 
mechanisms by which a change in land cover can affect the overlying planetary 
boundary layer (PBL), its thermodynamic properties and circulation, and conse-
quently the precipitation processes and regional climate (e.g., Pielke and Avissar 
1990; Stohlgren et al. 1998; Kanae et al. 2001; Pielke et al. 2007, 2011; Lee and 
Berbery 2012). This feedback can be important for water resources, for instance, 
Cai et al. (2009) have demonstrated the role that land-atmosphere feedbacks have 
had on the recent Australian drought: their model results imply that feedbacks in 
the system act to exaggerate a drying period and that, during a warm, dry period, the 
feedbacks in the climate system act to extend the dry period. In contrast, there are 
areas where the land use change involves extensive moistening of the land through 
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Fig. 2  Summary of impact of land-cover on atmospheric conditions
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irrigation. This might be the case in India where the strength of the monsoon is 
determined by the land-sea temperature contrast and decreasing surface tempera-
tures due to irrigation would be expected to reduce the intensity of the monsoon 
systems (Lee et al. 2009). Tuinenburg et al. (2011)’s study of the observed (from 
Radiosondes) atmospheric structures in the region show a potential alteration of the 
timing of the monsoon due to changes in PBL moisture from irrigated land. Douville 
et al. (2001) conclude that although precipitation does increase as a consequence of 
increasing evaporation this is somewhat counterbalanced, in the case of the Indian 
peninsula, by a reduced moisture convergence. Saeed et al. (2011) looked at these 
influences in more detail using a regional climate model, with and without irrigation. 
They found increased rainfall over the irrigated areas due to increased local moisture 
recycling and also an increase of the penetration of rain bearing depressions travel-
ling inland from the Bay of Bengal, caused by a reduction in the westerly flows from 
the Arabian Sea.

Several researchers have managed to capture this large-scale long-term relation-
ship between climatological precipitation (P), evapotranspiration (E) and potential 
evapotranspiration (PE) and, by implication, runoff (R), but possibly the most famous 
empirical equation was derived by Budyko (1974); see also Choudhury (1999):

	

E
PPE

P PE

=
+( )n n n

1

	

(1)

Where ‘n’ is a catchment specific dimensionless factor (Roderick and Farquhar 
2011). The shape of this curve for various values of ‘n’ is shown in Fig. 3. Roderick 
and Farquhar (2011) examined the effect of this relation on freshwater flows at the 
global scale and how well the climate models are able to represent it. They note that 
there are different regional responses to the large scale forcing of the water balance: 
in some regions where ‘n’ is high, changes in runoff follow closely the changes in 
precipitation. In other systems or regions where ‘n’ is low, changes in runoff are 
always greater than the changes in precipitation. Part of the reason for the differ-
ences is associated with different rainfall types (see Porporato et  al. 2004) and 
different topographic and land-cover responses to rainfall. Other influences include 
atmospheric feedbacks with the atmosphere as outlined in the previous section. 
In addition, an analysis by Zhang et al. (2004) showed that the land cover is a factor 
in defining ‘n’ with forests displaying a higher ‘n’ compared to data from grass sites 
(see their Figure 8). This result is confirmed by Yang et al. (2009). The change from 
forest to grass decreases the ‘n’ from 2.12 to 1.83. Since it is logical that the value 
of ‘n’ is affected by the strength of the land-atmosphere feedbacks, the results from 
Zhang et  al. (2004) suggest that forests have a higher feedback strength than 
crops, a point that has also been made by Bonan (2008). This is consistent with 
the result of Teuling et  al. (2010) who showed that forests have a conservative 
approach to the water use, so as precipitation drops and evaporative demand 
increases, the evaporation decreases quickly. Grasses and crops however do not 
drop their evaporation so quickly (they have a more linear response to precipitation 
decrease) and they lose the water, thus leading to hotter drier conditions in drought 
conditions. The larger feedback strength of forested regions is also consistent with 
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the finding of McNaughton and Spriggs (1989), who used a PBL model and 
found that the Priestley-Taylor parameter – which is a measure of the strength of 
land-atmosphere interactions – should be higher for forests than for grasses.

According to this analysis, the impact of having a decreased level of feedback 
between the surface and the atmosphere when changing the land cover from forest 
to crops and pastures is to reduce the sensitivity of the change in runoff to changes 
in precipitation. This will mean a more linear relationship between changes in 
precipitation and river flow, with less conservation of water and more drought 
vulnerability. These conclusions need to be more thoroughly examined with large 
scale observations and models.

3  �Land Use Change and Ecosystems

Climate is the main regional driver of ecosystem structure and functioning through 
the timing and amount of energy and water that is available in the system (Stephenson 
1990). In turn, ecosystems influence climate by determining the energy, momentum, 

Fig. 3  Ratio of evaporation to potential evaporation as a function of the ratio of precipitation to 
potential evaporation (aka the Budyko Curve) for different values of ‘n’
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water, and chemical balances between the land-surface and the atmosphere (Chapin 
et al. 2008). Hence, extensive impacts on ecosystems, both from natural origin and 
human made (e.g., land use changes), alter one or several pathways of the ecosys-
tem–climate feedbacks, which ends up affecting the regional and global climate.

Indeed, several studies (e.g., Pielke et al. 2002; Kalnay and Cai 2003; Weaver 
and Avissar 2001; Werth and Avissar 2002) have concluded that the contribution of 
land-use changes to climate change might be about 10 % of the total global change, 
but that regionally the relative contribution of land-use change may be notably 
larger, even larger than that from greenhouse gas emissions. There are conspicuous 
known cases showing how land-use changes may end up altering the regional climate, 
such as the aridification of the Mediterranean basin during the Roman Period 
(Reale and Dirmeyer 2000; Reale and Shukla 2000), or changes in the hydrome-
teorology of Amazonia after deforestation (Baidya Roy and Avissar 2002; Gedney 
and Valdes 2000). In South America, inter-annual variability in climate conditions 
significantly affects vegetation structural and functional properties (Phillips et al. 
2009; Brando et  al. 2010; Zhao and Running 2010), whose effects may end up 
influencing the regional climate.

The ecosystem-climate feedbacks are a central problem not only for modeling 
the land-atmosphere interactions of the climate system (e.g., Mahmood et al. 2010), 
but also for many other biological and environmental issues. Ecosystem-atmosphere 
interactions and feedbacks depend on the physical properties of the underlying sur-
face, like surface albedo, surface roughness, and stomatal resistance, among others. 
These properties affect the radiation balance at the surface as well as the exchange 
of momentum, heat, moisture, and other gaseous/aerosol materials. Changes in the 
structure and functioning of the ecosystems will thus have an impact on those 
exchanges that may end up affecting the climate regulation service that ecosystems 
provide to societies (Anderson-Teixeira et al. 2012).

Many land surface models do not consider the inter-annual dynamics of ecosys-
tems. Models of intermediate complexity have static vegetation or land-cover 
classes with look-up tables to identify their corresponding biophysical properties 
(Chen and Dudhia 2001; Ek et al. 2003). Land cover types are assumed to remain 
constant but, in reality, they may experience important changes. For instance, the 
biophysical properties of a typical vegetation type during a wet period should be 
very different during a drought. The same is true during anomalous periods of 
intense rain that can create numerous ponds, or flooding. A model that assumes 
constant surface properties will still be able to represent in general changes in soil 
moisture content and water stress, but will be unable to represent the different con-
ditions that emerge, e.g., when a field is flooded affecting land-atmosphere interac-
tions, the radiation budget, and the surface water, energy and carbon cycles. 
Dynamical vegetation models that include the carbon cycle are an attempt to 
advance in the area of ecosystem-atmosphere interactions, since they allow for 
changes in vegetation composition and have advanced assumptions regarding sur-
face processes that will feed back into the atmosphere. Yet, direct human-imposed 
land use change, as deforestation and land cover conversions may have an immedi-
ate impact on the atmosphere, as opposed to the slower effects included in a 
dynamical vegetation model.
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Traditionally, land-cover maps are mainly driven by vegetation structure and 
composition but do not formally include ecosystem functional aspects such as the 
dynamics of carbon gains. Ecosystems functional attributes (i.e., different aspects 
of the exchange of matter and energy between the biota and the atmosphere) add 
some advantages to the traditional use of structural variables. First, variables 
describing ecosystem functioning have a faster response to disturbances than 
vegetation structure (Milchunas and Lauenroth 1995). Second, functional attributes 
allow the quantitative and qualitative characterization of ecosystems services (e.g., 
carbon sequestration, nutrient and water cycling) (Costanza et al. 1998). Additionally, 
they can be more easily monitored than structural attributes by using remote sensing 
at different spatial scales, over large extents, and utilizing a common protocol (Foley 
et al. 2007). Functional descriptors of ecosystems have been successfully used to 
define Ecosystem Functional Types (EFTs) (Alcaraz-Segura et al. 2006, 2013; see 
also Körner 1994; Valentini et  al. 1999; Paruelo et  al. 2001). In ecology, such 
classifications into functional units aim to reduce the diversity of biological entities 
(e.g. ecosystems) on the basis of processes, and allow for the identification of homo-
geneous groups that show a specific and coordinated response to the environmental 
factors. EFTs are groups of ecosystems that share functional characteristics in rela-
tion to the amount and timing of the exchanges of matter and energy between the 
biota and the physical environment. In other words, EFTs are homogeneous patches 
of the land surface that exchange mass and energy with the atmosphere in a common 
way (Valentini et al. 1999; Paruelo et al. 2001; Alcaraz-Segura et al. 2006, 2013a, 
2013b). EFTs are computed from satellite information (e.g., spectral vegetation 
indices), so they do not identify the functions of a given plant species (as it occurs 
with plant functional types; see Wright et al. 2006), but instead identify a patch of 
land that has homogeneous properties in terms of exchanges of energy and mass 
over a given region. EFTs can thus be considered a top-down functional classification 
directly based on ecosystem processes.

The definition of EFTs relies in three metrics derived from the NDVI (Normalized 
Difference Vegetation Index) time series. First, the average of NDVI over 1 year 
(NDVI-mean) is a linear estimator of the amount of solar energy that is used for 
photosynthesis, formally called the Fraction of Absorbed Photosynthetically Active 
Radiation (fAPAR), and is empirically (Paruelo et  al. 1997) and conceptually 
(Monteith 1972) related to net primary production (NPP; Tucker and Sellers 1986). 
Second, the seasonal coefficient of variation (CV) is a measure of the intra-annual 
variation of photosynthetic activity, which has been used as an indicator of the sea-
sonality of carbon fluxes or the amplitude of the annual cycle (Oesterheld et  al. 
1998; Potter and Brooks 1998; Guerschman et al. 2003). Third, the phenology, or 
date of the absolute maximum of NDVI (DMAX), indicates the intra-annual distri-
bution of the period with maximum photosynthetic activity (Lloyd 1990; Hoare and 
Frost 2004). These three metrics capture important features of ecosystem function-
ing for temperate ecosystems (Pettorelli et  al. 2005; Lloyd 1990; Paruelo and 
Lauenroth 1995; Nemani and Running 1997; Paruelo et  al. 2001; Virginia et al. 
2001) and up to 90 % of the variability of the NDVI temporal dynamics (Paruelo 
et al. 2001; Alcaraz-Segura et al. 2006, 2009).
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Figure 4 is an example that presents the median of the 64 EFTs for North America 
as computed from MODIS (or Moderate Resolution Imaging Spectroradiometer) 
NDVI. The warm colors indicate greatest exchanges of mass and energy between the 
ecosystems and the atmosphere. As expected, these regions include the coastline of 
the Gulf of Mexico extending over the Great Plains, subtropical forests surrounding 
the Gulf of Mexico and the Caribbean, the Pacific coast, the North American 
Monsoon in northwestern Mexico and the East Coast states. On the other hand, 
desert regions in Arizona and Nevada, where the net productivity is very low, are 
depicted with dark colors; tundra is distinctly identified in light purple. The figure 
depicts the median EFTs for 2001–2009, but since EFTs can be defined on a year-
to-year basis, they can give a much better representation of time-varying surface 
states. Since EFTs are identified from time-series of satellite-derived estimates of 
the carbon gains dynamics (e.g. spectral vegetation indices such as NDVI and EVI), 
differences between sensors and datasets may occur due to the corrections applied 
(Alcaraz-Segura et al. 2010a). Such differences can be used to evaluate the uncer-
tainty of the approach and the sensitivity to different databases (e.g. Alcaraz-Segura 
et al. 2010b).

Another advantage of Ecosystem Functional Types is that their definition is 
exclusively based upon the carbon gain dynamics estimated from time-series of 
satellite images, so EFTs are able to capture differences between natural ecosystems 

Fig. 4  Ecosystem Functional Types based on three descriptors of the seasonal dynamics of the 
NDVI estimated from MODIS images for the period 2001–2009
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(e.g. native oak forest) and managed ecosystems (e.g. tree plantations) when they 
differ in their carbon gain dynamics. For instance, Volante et al. (2012) showed how 
the intrusion of cattle rising and croplands on natural dry forest and shrublands 
of NW Argentina significantly changed satellite-derived ecosystem functional 
attributes related to productivity and seasonality and, subsequently, the EFTs 
composition (Paruelo et al. 2011).

4  �Societal Needs for Research on Water Over Land

All organisms, including humans, require water for their survival. Therefore, ensuring 
that adequate supplies of water are available is essential for human well-being 
(Millennium Ecosystem Assessment 2005; Oki and Kanae 2006; Vörösmarty et al. 
2010). Water issues are related to poverty, and providing access to safe drinking 
water is one of the key necessities for sustainable development (WHO/UNICEF 
2012). However, better information on the hydro-climate system is necessary to 
understand the issues of supply and demand of water, both in the current climate and 
the future. Substantial changes to the Earth’s climate system, hydrological cycles, 
and social systems have the potential to increase the frequency and severity of water-
related hazards, such as: storm surges, floods, debris flows, and droughts (IPCC 
2011). Global population is growing, particularly in the developing world and is 
accompanied by migration into urban areas, and could be associated with large scale 
land use/land cover changes. The urbanization threatens to increase the risks of urban 
flash floods and reduce per-capita water resources. Global economic growth is 
increasing the demand for food, which further drives demands for irrigation water 
and drinking water, demands more cropland, and potentially changes land use/land 
cover. Therefore it is critically important to consider both the social and climate 
changes in a concerted framework (Kundzewicz et al. 2007) as illustrated in Fig. 5.

In the past, water issues remained local; however, they are becoming a key 
global issue due to the increased awareness that human induced global warming 
has large impacts on the water cycle. Further, due to the increase in international 
trade and mutual interdependence among countries, water issues now often need to 

Fig. 5  Impact of human activities on freshwater resources and their management, with climate 
change being only one of multiple pressures (Modified after Oki 2005)
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be dealt on a global scale, and thus require information on global hydrological 
conditions and their changes associated with climate changes. In trans boundary 
river basins and shared aquifers, it is necessary to share not only hydrological 
information but also any development plan that implies modifying LULC to reduce 
conflicts between relevant parties. In addition, quantitative estimates of recharge 
amounts or potentially available water resources will assist in implementing sus-
tainable water use.

Global hydrology is not only concerned with global monitoring, modeling, and 
world water resources assessment. Owing to recent advancements in global earth 
observation technology and macro-scale modeling capacity, global hydrology can 
now provide basic information on the regional hydrological cycle which may sup-
port the decision making process in the integrated water resources management.

The use of offline land surface models at very fine spatial and temporal scales, 
e.g., 1-km grid spacing and hourly time intervals, is yet to be fully assessed (Oki 
et al. 2006; Wood et al. 2011). For such research efforts, observational data from 
regional studies can provide significant information for validation, and efforts to 
integrate datasets from various regional studies should be promoted. The recent 
Coordinated Regional Climate Downscaling Experiment (CORDEX) initiative 
(Giorgi et al. 2009) from the World Climate Research Program (WCRP) promotes 
running multiple RCM simulations at higher spatial resolution for multiple regions, 
and current and future estimates of atmospheric conditions will be provided, 
although at much lower resolution than that of the offline land surface models.

Certainly another societal need is to assess the impacts of human interferences 
on the hydrological cycle due to land use changes, such as deforestation and urban-
ization, reservoir constructions, and water withdrawals for irrigation, industry, and 
domestic water uses (e.g., Haddeland et  al. 2006; Hanasaki et  al. 2006, 2010; 
Pokhrel et al. 2012a).

Withholding water in reservoirs may result in a drop in the sea level. On the other 
hand, over exploitation of ground water, particularly “fossil water” which has virtu-
ally no or very little recharge at present, would have contribution to sea level rise. 
These effects are studied based on in-situ observations (Gornitz et al. 1997; Konikow 
2011), satellite observations (Rodell et al. 2009; Moiwo et al. 2012), and modeling 
studies (Wada et  al. 2010; Pokhrel et  al. 2012b). Satellite information like that 
provided by GRACE (Gravity Recovery and Climate Experiment) serves to monitor 
the long term changes of these major water storages over land, and provides a 
powerful tool to assess and validate the global estimates from models.

5  �Current Gaps, and Future Challenges

Current global land surface modeling has begun integrating most of the latest 
achievements in process understanding and regional- or local-scale modeling stud-
ies. For example, there are emerging efforts in global simulation of the occurrence, 
circulation, and balance of solutes and sediments. In addition, improvements to the 
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modeling of hydrology and groundwater are being incorporated into the models. 
Less developed are efforts to consider both natural and anthropogenic sources for 
nutrients, as well as their coupling to agricultural models that simulate crop growth 
and yield. Precise information on land use/land cover (LULC) is essential to have 
better estimates on nutrient, carbon and water cycles. Coupling of the LULC 
changes with biogeochemical and biogeophysical land surface model would be nec-
essary for better future projections considering both climate and societal changes.

Hydro-meteorological monitoring networks need to be maintained and further 
expanded to enable the analysis of hydro-climatic trends at the local level and the 
improvement in the accuracy of predictions, forecasts, and early warnings. As 
clearly illustrated in Fig. 6 (Oki et al. 1999), global hydrological simulations are 
relatively poor in areas with little in-situ observations. Basic observational net-
works on the ground are critically crucial for proper monitoring and modeling of 
global hydrology; they are also needed to validate remotely sensed information 
that in turn is needed in order to fill the gaps of in-situ observations. Reliable 

0

100

200

300

400

500

600

D
en

si
ty

 o
f R

ai
ng

au
ge

s 
(/

10
6 k

m
2 )

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Runoff; (Model - Observation) [mm/year]

Y1988

Runoff Estimation Error (Mean 11 LSMs) and
the Density of Raingauges in each River Basin

before routing

Y1987

Fig. 6  Comparisons between the density of rain gauge [/106 km2] used in preparing the forcing 
precipitation and the mean bias error [mm year−1] of 11 LSMs for 150 major river basins in the 
world in 1987 and 1988 (Oki et al. 1999)
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observational data are essentially necessary not only as the forcing data for global 
hydrological modeling, but also for the validation of model estimates. River dis-
charge and soil moisture data are critically important for global hydrological studies. 
Hence the cooperation and coordination of operational agencies in the world need 
to be prioritized and promoted.

Some key land surface processes, such as hydrology, have been represented in 
only simple ways in the current global climate models or earth system models due 
to their relatively minor impacts on the climatic feedbacks from the land surface to 
the atmosphere on global scales. It has also been pointed out that differences 
between land surface models is the major source of uncertainty in water balance 
estimates and multiple impact models are recommended to be used in this type of 
studies (Haddeland et al. 2011). However, land surface models with higher spatial 
resolution information are now being developed as impact assessment tools to sup-
port decision-making. Integrated land surface models that consider biogeochemical 
cycles and anthropogenic interventions explicitly (e.g., Hanasaki et  al. 2010; 
Pokhrel et al. 2012a, b) need to be developed and implemented in order to provide 
more realistic impact assessments and to support the design of practical adaptation 
measures. In the WCRP conference held in Denver, CO, USA, in October 2011, 
these research needs and gaps were identified in the Land session. The identified 
research needs are outlined next:

•	 The observed and modeled feedbacks between land cover change induced by 
human activities needs to be assessed. Furthermore, the impact of deforestation 
on river flow, heat waves and wild fires should be investigated.

•	 There is a need to check that the earth system models are reproducing the simple 
signals that have been observed with large scale land use change, such as the 
cooling effect of deforestation under normal climate conditions, and the opposite 
warming effect under drought conditions.

•	 Current earth system models need to include and improve their representation of 
crop growth in order to better understand the role of land use change on the 
regional climate and subsequent impacts.

•	 WCRP, through efforts in GEWEX, has made great advances in understanding 
the land-atmosphere coupling and its relation to the hydrologic cycle. Yet, there 
are several areas that currently are poorly covered or not covered at all in the 
WCRP structure. Two GEWEX panels, GHP and GLASS, are the closest to the 
themes discussed in this paper, and could either assume or partner with other 
groups to lead efforts in the following areas: (a) Impacts of irrigation and water 
management on the hydrologic cycle of large basins; and (b) Effects of LULC on 
land-atmosphere feedbacks and its subsequent impact on river flows.

•	 For future states of the climate system, future assessments of the evolution of 
land use will require an interdisciplinary approach that considers not only the 
physical science but also societal aspects and economy information.

•	 A very challenging issue is that of prediction of land use changes based on soci-
ety’s future needs and responses to change. Assessments of future land use are 
important for climate prediction and climate change scenarios, and in this case 
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WCRP will have to partner with human dimensions groups (e.g., IHDP) in order 
to advance our knowledge of future states. Initiatives promoting interdisciplinary 
research that includes the physical aspects as well as human dynamics will be 
needed.

6  �Concluding Remarks

Land use has had a large impact on water cycles and carbon changes over the twen-
tieth century, and consequently understanding land surface processes is crucial for 
research of the climate system, and more so in relation with delivering policy rele-
vant knowledge. The choices we make in LULCC will likely influence future climate 
through the water, carbon and energy balances and cycles.

Major advances in recent Earth System Models (ESMs) include state of art global 
scale land surface models that include anthropogenic activities such as irrigation, res-
ervoirs and the carbon cycle. They are very promising to assess past, current and 
future global water crisis and may provide valuable information supporting better 
policy-making in crop and water management. The relation between biophysical 
effects of regional LULCC and global GHG is still unclear. For these reasons, LULCC 
matters at regional scale and so must be included in studies of climate change.
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